
New Whitepaper: How Embedded Motion Makes Great Products Smaller
Starting new designs with all-in-one positioning modules allows product development engineers to achieve smallest system size. Find out how.
Want to learn more about piezoelectric micro motors, micro stages, motion systems and applications? Here are some observations, articles and papers that we think you’ll find useful. Have a look, and then give us a call with your questions.
Starting new designs with all-in-one positioning modules allows product development engineers to achieve smallest system size. Find out how.
Elektor Magazine spoke with New Scale CEO David Henderson about SQUIGGLE® micro motors, developing the world’s smallest precision motion systems, and what’s next for the company.
The innovative UK company IrisGuard is using New Scale Technologies’ Focus Module to power its iris recognition systems that serve millions of unbanked customers around the world.
Case Study: A neuroscience researcher successfully used M3-LS Linear Smart Stage assemblies for positioning of probes during in-vivo recording. New Scale engineers then collaborated on an integrated multi-probe positioning assembly to meet the needs of this market.
Case study: Piezo focus system enables portable cytometers, expands access to healthcare in resource-limited settings. A customer wanted to create a backpack-portable blood analyzer for use in resource-limited settings that do not have access to institutional laboratory instruments and services. New Scale’s miniature precision focus system helped to make it possible.
Article: New Scale’s micro beam steering solutions for handheld devices are among Laser Focus World’s Top 20 Technology Picks for 2015.
Article in Laser Focus World magazine: Fully integrated and miniaturized “point-to-point” beam steering system bypasses the issues with MEMS-based approaches and addresses the needs of many emerging markets in medicine and industry.
Article in Photonics Spectra magazine: Smart motion technologies can reduce system size and simplify integration, enabling smaller photonic instruments with full performance.
Technical paper published in IEEE/ASME Transactions on Mechatronics by Sungwook Yang, R.A. MacLachlan and C.N. Riviere; Robotics Institute, Carnegie Mellon University
Article in MDT magazine: In an effort to advance the benefits that lasers can offer to surgeons, Memorial Sloan-Kettering Cancer Center partnered with a motor and motion control specialist to fabricate an endoscopic laser scalpel that incorporates a remote-controlled beam steering device right in the endoscope head.
Article in ECN magazine – Advances in piezo motor driver electronics reduce system power by approximately 40% while maintaining output power (motor speed) and optimal motor performance, and producing smoother, quieter motion.
Many optical applications require an off-axis sensor configuration to leave a clear aperture for light transmission through the center of a rotating optical element, which may be a polarizing optic, a micro filter wheel, a wedged prism or other component.
Hall effect position sensors with on-chip analog-to-digital conversion (ADC) lend themselves to very tiny systems. Using a novel implementation of these integrated linear position sensors, engineers at New Scale Technologies created a unique off-axis rotary position sensor that delivers absolute angular position information over a standard I2C serial digital interface. This sensor has a wide clear aperture, very small size and low power use. Coupled with New Scale’s tiny piezoelectric motors, it enables highly-miniaturized optical systems.
Technical paper Presented at Actuator 2012 by David Henderson, New Scale Technologies – Micro-scale smart actuator modules have recently been commercialized for imaging systems. These smart actuators enable “plug and play” integration, rapid prototyping and faster times to market.
Article published in Electronic Products – Technology developed for today’s smart phone cameras is being extended for use in non-consumer applications. In this article we discuss how and why phone camera focus systems evolved from voice coil motors to piezo motion systems, and what that means for designers of embedded imaging systems for non-consumer applications.
Technical paper Presented at SPIE Photonics West BiOS conference 2012 by Snehal Patel, Milind Rajadhyaksha, Stefan Kirov, Yongbiao Li and Ricardo Toledo-Crow, Memorial Sloan-Kettering Cancer Center (MSKCC)
We all are familiar with the consumer digital cameras that are in our pockets, mobile phones and personal computers. Thanks to incredible advances in microelectronics, CMOS image sensors and optics, most of us have a very good camera within reach most of the time.
Now these tiny cameras are inspiring product engineers in “non-consumer” applications—such as biometric identification, medical and diagnostic devices, and machine vision—to make even greater products. In fact, markets for these new applications are projected to grow faster than consumer camera markets over the next few years.
In this article we discuss sensor and lens requirements, compare the M3-F focus module to voice coil motors and stepper motors, and talk about image processing, digital signal processing and other system considerations.
Technical paper in Optics Letters by Shoude Chang, Erroll Murdock, Youxin Mao, Costel Flueraru and John Disano, Inst. for Microstructural Sciences, Nat’l Research Council Canada
Article published in Design World – by David Henderson and Lisa Schaertl – Here’s what happened in a multi-year collaboration among engineers and scientists at New Scale Technologies, austriamicrosystems (now ams) and TDK-EPC to simultaneously develop the motor, mechanics, electronics and control systems for the M3 micro-mechatronics module.
Technical paper presented at Actuator 2010 by David Henderson, Qin Xu and Daniele Piazza, New Scale Technologies
Article in Design News – Dramatic reductions in voltage and power requirements are making tiny piezo motors and drive systems an interesting option for portable, low-power medical devices. By eliminating the need for the high voltage normally associated with piezo systems, a new piezo motor design from New Scale Technologies enables miniature motion systems that operate on a single 3-V battery without using voltage boost circuits.